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Chapter 2 Crystal Diffraction

2.1 The Reciprocal Lattice

2.2 Experimental Determinations of Lattice Structures
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2.1 Reciprocal Lattice

How to ""'see' the lattice structure?

# (degrees)

diffraction spot <> a family of lattice planes

reciprocal lattice <> direct lattice

distribution of spots — lattice structure 2
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2.1 Reciprocal Lattice

Reciprocal lattice

2016538 7H 22:44

RQC"PY—DC&/ (&H'lcz /3,“9.( a {ahﬁ/RMer%J ﬂ’/e Ih S’o/.«'a/ 5%0‘%6 fzﬁﬁq
( /Jer}oaﬂ}c /&(ice'%r;mm )

@ f%&“fg 07[ ﬁh(%;ohg w}%A &/’ww{d@ rf /gﬂzb’a;y /aZZI/TQ
@ “faw of mamectum Conservation” in disaete Jotfice

Cohs’;c»/e(' A f/ﬂhé Wave éik.r

Lv 7[1@ cet 2l wave vectars {E] A hat 3.?9/0/ /)/é’hé wave with Heo Same_
f)é’r.ta‘a{.-cll? af a }Nen BYRVR'sS‘ /A:{‘[z:(e {é} ;S f.ILS YQC;‘/JYU(A/ /aj{‘,@

§ Q theors A cr;%/ A‘{mmm

=) 0 ll K()’-FR) = e!. f& i 4 [jétmé’ PE’VF'DJ#-C-'.{; . J;VQC[L M@J

B R

<75 Q‘C'R .. &



K}Ta v"" (7 (g & A #
e It T IR T IR : :
@ e Niveme 2.1 Reciprocal Lattice

1. Reciprocal lattice of a Bravais lattice is also a Bravais lattice

Bravais lattice: A set of discrete vectors (not all in a plane)
closed by vector addition and subtraction.

vod - el fom a Braws (aftice (-5“/7/”)’@ {EE constitute a
PY f gk—j 7CD (Brave.s /aﬂ‘{f'@.
ef_ii:i i(Ehg)'/i:i 2.7 C{E/
% &R ) = ¢ 5 Ltk €
e =7

2. The reciprocal of the reciprocal lattice is just the direct lattice

eor =1 {G} constitute nothing but the direct Bravais lattice
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I. Reciprocal Lattice Vectors
Primitive vectors of a Bravais lattice: a,,a,,a,

R, =la, + 1,4, + 1,a, generates the direct lattice

_ =

b ,b,,b, are a set of vectors satisfying

2i=j

0,i¢j l’.]=19293

a. B =271'5i- = {

G, =hb, + b, +hb, (h  h,,h, are arbitrary integers)

generate the reciprocal lattice.
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r 51=271'A dzAxdi
al'(azxa3)
— a.XxXda
b,=27 !
= 9B e
. a, xda
b,=2 1 2
’ ”‘71'(‘72x‘73)

Q=a, -(dz X ﬁ3) ——volume of primitive unit cell

Q" =b, -(52 X 53) ——volume in the reciprocal lattice
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Real space Reciprocal space Real space Reciprocal space
[ L L o ° o ° . . . . °
B
() ° ° <l °
J ] Te e ||
[ [ A
a ¢ A D a [ ) [ ]
[ [ J ®
L o [
B .
All possible Bravais 0000 ©co0o0o0 © o o
lattice in 2D: Eg;fc:’o oo Yf , ©
0 0 0 &0 00 o’ o
1. Obllque (Cz) la‘l=la~_,ll-¢:90" latl=|%;¢=m“ Ia,l=la,;m=90°
2. rectangular (D,) | |
3. face-centered rectangular S = 2
4. triangular G%lo E |
5. square v . i
lay| = |y}, @ = 120° lay = la,), @ = 90° 7

4 5
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2.1 Reciprocal Lattice

I1. Relation between direct and reciprocal lattices

1. The primitive unit cell

volume of primitive cell : (272‘)3
[J [ J [ ) Q =
in reciprocal lattice:

Q" =b, (b Xb) (2”)3 (azxa3) [(a3xa1)x(a1xa2)]

10




. BEIHANG UNIVERSITY

2.1 Reciprocal Lattice

2. lattice plane and the family of lattice planes

In a jiven Rravens /ax‘ﬁ(e)a lattice P/me /S (:/ef;m/ to be
2y P'Qne_ Cok{‘ﬁ;ﬂ}f\dﬁ fhﬁnl&g meny [attice sites,
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3. Relation of reciprocal lattice vector to
a family of direct lattice planes
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2.1 Reciprocal Lattice
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2.1 Reciprocal Lattice

@ se Yec}{mc&( [attie vector 4o index +he fami/g of [atic plames
/?:: hZ + ,éz +ﬂ2; and F/cme (hk 1)
Use Miller indec (b, k,0) 4o [che| the foily of plenes chb.p)
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I11. Brillouin zone, BZ

The Wigner-Seitz primitive unit cell of the reciprocal lattice

is called the first Brillouin zone.

Example 1. 2D square lattice

—_ —_

direct lattice: a, =ai a, =aj

. o R 2”? = 272«. -
reciprocal lattice: b, = —1i b,="j
a a

15
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first BZ.:
n-—-uv
12 — U,
13~ _bl
14 — _bz

2.1 Reciprocal Lattice

16
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2nd BZ :

G24 = _Bl — Bz
3rd BZ

2.1 Reciprocal Lattice

17
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2.1 Reciprocal Lattice

18
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Example 2. Simple Cubic

a, = ai a, =aj

2.1 Reciprocal Lattice

19
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Example 3. BCC & FCC

1st BZ of BCC

2.1 Reciprocal Lattice

1st BZ of FCC

20
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2.2 Experimental determination of crystal structures

v' Study the crystal structure by

diffractions of waves.

v" 3 kinds of waves: photon, electron,

and nuetron.

v" The crystalline atoms cause a beam
of incident X-rays to diffract into

many specific directions.

v' Diffracted beams in directions quite

different from the incident direction!

Wavelength, A

10 —

5!
\_X—r'u\' photon

N Neutrons

Electrons[N_ NN

N

7

1 5 10 50 100
Photon energy, keV
Neutron energy, 0.01 eV
Electron energy, 100 eV

Wavelength versus particle energy,
for photons, neutrons, and electrons.

21
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William Henry Bragg William Lawrence Bragg
1915 1915

Max von Laue
1914

The Nobel Prize in Physics 1914 | The Nobel Prize in Physics 1915 was awarded jointly to Sir

was awarded to Max von Laue William Henry Bragg and William Lawrence Bragg "for
"for his discovery of the their services in the analysis of crystal structure by means of

diffraction of X-rays by crystals". | X-rays"
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Photographic
plate

June 8th 2012 marks the 100th anniversary of
the first report of X-ray diffraction by Max
von Laue and colleagues, University of
Munich, Germany.

von Laue came up with the idea to send a beam
of X-rays through a copper sulfate crystal and
record the results on photographic plates LUDWIG-

MAXIMILIANS-
(pictured). LMU UNIVERSITAT
MUNCHEN
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(1) Diffraction Conditions (Laue condition)
Theorem: The set of reciprocal lattice vectors G determines the

possible x-ray reflections.
path length diff.: §=ON-OM =7-k—7-k'

constructive cond.: 7 - (k -k ')= ni, n is integer

The incident & reflected wave:

i=Tk k=i
A A
if (E—E')zni r (E—E')zZﬂn

7 : direct lattice vector, R -G, =2zm >
k-k'=G, Diffr. Cond. in the reciprocal lattice
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(2) Bragg law
v" 3D Bravais latt. can be decomposed into a family of lattice planes.
v X-ray beams are reflected on the planes and have constructive or

distructive interferances according to the phase factors.

path diff.: 0 =2dsind

of 16 nA=2dsiné

’/?}4: i =1.2.3.--- :
L~ n=1, 4 9, order of diffr.
\4;119

Bragg condition

Bragg law can be satisfied only for wavelength A = 2d 25
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(3) Derive the Bragg condition from Laue condition
— diffr. cond. in reciprocal space

k—k=G| |k=lk=2"

— o, k.k',G, constitutes an isosceles

/) Gy, (;h is perpendicular to the Bragg
g plane (/,h,h,)

The Laue diffraction can be regarded as Bragg reflection
from k to k' on the crystal plane(hh,h, ), since |G|=2n/d:

diffr. cond. in direct space

‘Gh‘ 27n ~
- 2sin @ - 2d sin @ i 2dsin@ =nl| ,

| =&
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A

(4) Laue Equations and Ewald Construction
a, * Ak = 2m7v, ; a, * Ak = 27v, ; a; * Ak = 270, .

Laue equations, hard to be satisfied simultaneously!

v" The points on the right-hand side are
reciprocal-lattice points of the crystal.
K terminates at any reciprocal lattice

Int.
\ poin

v A diffracted beam will be formed if
this sphere intersects any other point
In the reciprocal lattice.

This construction is due to P. P. Ewald
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2.2 Experimental determination of crystal structures

(5) Brillouin zones and Diffraction Condition

The Brillouin zone gives a vivid geometrical interpretation of
the diffraction condition.



;ﬁt RERRRE 22 Experimental determination of crystal structures

BEIHANG UNIVERSITY
N —

2. Structure Factor
v Laue Eq. & Bragg Cond. — determine the planes/directions
having significant constructive diffraction.

v' Structure Factor — determine the intensity of diffraction.

ﬁ Fourier Transform of a periodic function on a lattich

=E ng exp(iG - r)
G

!

=W_" dV n(r) exp(—iG * r)

nG W
\ cell /
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g 7 IS the position vector of point
P, the phase diff. of the
scattered wave from point P

with that from origin point O is :

Ap=(k'-k)-F

electron density around an atom j. » ,-(l7 )

Total scattering amplitude along k' direction:
£,(G,)=[n,(7)e"™ )" a7 =[ n, (F)e " a7

——Atomic form factor, measuring the scattering ability
of a single atom

30
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(2) Geometrical Structure Factor

Consider p atoms with position vectors:

—_—

d., j=1925"'9p

J

Phase diff. of scattered wave from d jwith that from origin:

Ap=(k-F)-d,

J

Total scattering amplitude (of a unit cell) along &' direction:

S5, = 1 @, )Zp: e
J=1

atom form factor, atom arrangement, diffraction direction
32

geometrical structure factor
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(3) Cancellation Condition:

2

=S5, S,

diffraction intensity: [, , o ‘S G,
Peak disappears in the diffraction pattern when /=0.

@ BCC

Conventional unit cell of BCC contains fwo atoms:

—_—

I
d =0 d2=5a(x+y+z) h=h=1

@Ql
1
Ny

_ _ . 2m,. . . .
b +hb,+hb, = 7(h1x+hzy+h3z)

S, = z”:fj( - )e_i(;,,.aj

j=1 33

&‘
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) 8(G)= s [
[0 Hh+h+h =T
_{Zf Lh +h, + h, = B3

Family of lattice planes having diffraction peaks: (110)
(200) (211) ...

@ FCC

Conventional unit cell of BCC contains four atoms:

—_

hLh=hL=L=L=F
G, =hb, +h,b,+hb (hx+h2y+h3z) y
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S(Gh) _ f|:1+ e—m(h1+h2) N e—i:r(h2+h3) +e—i7c(h1+h3)]

[0 Hhy,hy k5T T, BT AR
Af S, hy, h BN ET R R

Diffaction peak cancels when the Miller index contains both
even and odd numbers; the plane indices consisting of all

even or odd numbers show up in the diffraction patern, say:

(111), (200), (220)...

® diamond structure

_________________

See exercises Ex. 5 of the

text book (C. Kittel).
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3. Experimental methods of XRD

(1) Laue Method continuous X-ray spectrum
/] =
Sample
} J } A 9 - s
Collimator
| Forward
Back =9 *—-.._____ diffraction
reflection F|ullﬂl
position

plate position

Goniometer
mount

A Laue flat plane camera, using polychromatic X-rays. The pattern of
Laue spots can be photographed in either the forward or the back-reflection position, The
sample can be rotated about three orthogonal axes, and then X-rayed again, to confirm that
a desired orientation has been obtained.

36
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Laue Method

Centre of
reciprocal
lattice

Polychromatic

X-ray beam .
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(2) rotating-crystal method

single-frequency X-ray

X-ray
source

Collimators

9
A

T

e

Monochromating
crystal

=

Undeflected beam
(unwanted '
wavelengths)

To photographic
plate or counter

A rotating crystal arrangement, using monochromatic X-rays selected
by Bragg reflection from a separate crystal. In a rotating crystal camera, the crystal is rocked
back and forth while the series of diffraction images is recorded on a cylinder of pho-
tographic film placed so that its axis coincides with the rotation axis.
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monochromatic X ray,
use powder or polycrystal

diffracted rays

EOIINC

(200)

Intensity (a. u.)
(111)
(220)

Diffraction pattern of

example powder X |
Y L_JLJ;W

(333)/(511)

(440)
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Screen
F cathode anode
63V ac A N
O £ ,
Ve — >
C3 2 mm plug / i j
/

heater carbon target Tt7 v
ammeter
I Va + + ‘

—L 0-5000 V dc

— 5 kV POWER SUPPLY

Electron Diffraction Experiment Diagram

Ernst Ruska
1986, electron microscope

Neutrons are electrically neutral, they
penetrate matter more deeply, provide
valuable probes of bulk properties.

Neutrons carry spin, and thus can be used to detect magnetic
periodic structure (long-range order).
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Scanming Tunneling Microscope

Control voltages for piezotube

Tunneling Distance control
current amplifier  and scanning unit

with electrodes

Piezoelectric tube

Adsorbate

| Sample

—I— Tunneling
voltage

Data processing
and display
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@;ﬂt % T IR R Scanning tunneling microscope

Gold 100 surface

o

-
: e
- o -
o~
; r
. L]

F J’r F -
=T .:""‘,,'

7 '
::/:r' o M
LTI IS

Nanomanipulation via STM of a self-assembled
organic semiconductor monolayer (here: PTCDA

- - S30m  molecules) on graphite, in which the logo of the Center
for NanoScience (CeNS), LMU has been written

Graphite surface
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The powder method is used to record the diffraction patterns of cubic
crystals : simple cubic, body-centerd cubic, face-centered cubic.

a) Recall how, using the Bragg relation, one can index the
characteristic diffraction peaks of a cubic crystal and determine the lattice
parameter.

b) Evaluate the structure factors of the different cubic structures
and deduce in each case the allowed peaks.

c) Figure 3 drawn below represents the profile of the X-ray
intensities diffracted by a cubic crystal (powder diagram). The measurement of
the scattering angle for the two first peaks is 23°6 and 27°1. Determine the
Bravais lattice of the corresponding crystal and index the observed peaks.
Evaluate the lattice parameter, knowing that the radiation used is the
K.radiation of copper with a wavelength A = 1,54 4.

’

Figure 3
< 20

I
I
I
It

1 ]
. JLJLJ_I_.LJVL_JL__JU‘ 1
80° 60° 40° 20°




The Bragg condition is :

. 21 S
2d,,sinB=2——sinB=L <> AS=5-5,=6

|thl |

ol G=hA+kB+IC

For a simple cubic lattice of lattice parameter a, we have :
- |15l 1zl 2nm a
Al=B|=|C|=—, donc d, =
H H H a RN NNV

and the Bragg relation is written as:

a o
2 sinf =4
vh? + K2 +1°

In the powder method, the Bragg reflection for a given angle 6 is associated to a
set of equivalent planes as for example :
(111),(111),(121),(112),(112),(121 ) (111 )



The increasing values of 6 (and so of sin 0) are associated with increasing values
of h? +k? +?, with sin0 < 1. The first allowed reflections for a cubic lattice are:

h* +k* +F h k|

1 100

2 110

3 111

4 200

5 210

6 211

8 220

9 300,221
10 310

11 311

12 222

13 320

14 321

16 400

17 410,322
18 411,330
19 331

20 420

21 421

Fhk| _ Zfe—iZH(hXﬁ-kyi”Zi)




v’ consider the geometric structure factor

Simple cubic | Body centered | Face centered
cubic cubic

100

110 110

111 111

200 200 200

210

211 211

220 220 220

300,221

310 310

311 311

222 222 222

320

321 321

400 400 400

410,322

411,330 411,330

331 331

420 420 420

421




The corresponding angles of the diffraction reflected beams are given by:

sin(6,,) = %«/hz K

For the ratios of the 2 first angles, we obtain:

Simple cubic M =2 =1.414
. sin® 2
Centered cubic —20 - —_ =-1414
sinb,,, 2
Face centered cubic S1N Y50 - i =1.154
sinf,, 3

For our experimental spectrum:

20,=23.6° 0,=11.8°  sin(11.8) = 0.2045
20, =27.1° 0,=1355° sin(13.55) = 0.2343

0 Z::ZT = g;g:g =1.146, the value corresponds to the face centered cubic
lattice.

The allowed reflections are :
(111),(200),(220),(311),(222),(400),....

The lattice parameter is given by:
8

2sin0,,

1
-1543— 1 _652A
a ‘/_2*0.2045

a= h? +k? +F



