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Chapter 5 Crystal
Thermodynamics

5.1 Phonon heat capacity
5.2 Experimental Determination of Phonon
Spectrum

5.3 Anharmonic Effects
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5.1 phonon heat capacity

5.1 phonon heat capacity
I. Density of states

Consider an atomic chain consisting of /V lattice sites:

g=" =27,
Na L

where / is an integer
L = Na —the length of the chain

the g-points are regularly arranged in a 1d chain, with

distance 27/ L to each other.
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S.1 phonon heat capacity

For large L, the distance becomes |
|
small, and the g-points are nearly (2m/L) |

continuous; each g-value (a single

:

point) represents a vabration 0 s
:

mode. i

For an arbitrary distance dg, number

of modes dn in between is:

dn —d
27zq

q is related to frequence o via the dispersion relation, we can

thus get the # of vibration modes in the range of (»,0+dw) -
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5.1 phonon heat capacity

1. Definition

Density of modes (states): # of vibration modes per unit
frequency interval

_dn
dw

g(o)

2. D.O.S. of an atomic chain

g(w)do=dn
L
dn=—d
" 27 g
g(a))da) = qu



WELE S At ET

"/ BEIHANG UNIVERSITY

g(0)= " (dwj

27/ \ dg

for a given o value, there exist two

|

symmetric g vlues: E
L /(do) |

go)==/1""|

) \ dq )| _ |

48

5.1 phonon heat capacity

wik)

M

dispersion: |©=2 \/ ('Bj sin ¢
M 2
do =2 ('Bjacosqa = ga)m cos 12
dg m)?2 2 2
4p

in which, @, =./——
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5.1 phonon heat capacity

2N

B 2 2
ﬂ\/wm -

ow=0, g(a)) is finite
co=a,. go)>

co>an,, g(@)=0
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5.1 phonon heat capacity

3. Diatomic chain

for each branch @, (q) a_ (Q)

corresponds: g+(w), g_(a))

8@)=g.(@)+g (o)

Confours

4. General crystals

q-points with the same frequencies

=
consititutes closed contours, or a q
isosurface. \‘0
7
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S.1 phonon heat capacity

For a given branch j

oo \d)=w
/\9) T~ wo isoenergetic
) (q + dq) —w+dw —  contours/isosurfaces

Count # of all modes between these two isosurfaces: dn j

Equal. gj(a))da) = determine gj(a))

Sum over all branches, one gets the total density of states:

g(a))= Zgj(a))
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5.1 phonon heat capacity

Example: A cube with length L

According to periodic boundary condition,

l.27 27

.= =] —
1: N.a. "L

1 1

: (2ﬂj
volume per q-point: =

A unit volume in g-point space contains:

LY v
oy 2@ allowed ¢

V-

volume of the crystall
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5.1 phonon heat capacity

Isosurfaces are spheres, with radius g.
The # of modes in this sphere:

10
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gj(a))da)j = (27[)3 *dg

| 4 , /[ do A
do,
dgq

For arbitrary isosurface, and any branch, vibration modes are

uniformly distributed in g space. Corresponding DOS is:
1 N NQ, V

,;3) Q" (2x) " (2n)

11
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V
dn = X (volume between w and o+ dw)

(27)’
Vv

(27)’

dS--surface element,

dn = [dsdq,
S

dg ,--distance between two surfaces

dw; = dql‘an)j(q){

quj(q)

gradient along direction normal to the surface

12
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5.1 phonon heat capacity

V dsS
dn = do.
" (275)3‘! v,0,(q)

dn _ V J- dsS
do, (2”)3S‘an’j(q)‘

g(»)=

Total Density of States:
g (w) = Zg j (w )
j
which satifies:

U g(w)dw=3PN ‘
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S.1 phonon heat capacity

I1. Heat Capacity
1. lattice heat capacity

[ [ J [ J [ J ag
Specifici heat of solid is defined: C, = (8 Tj
V

E: average intermal energy of solid, including energies of

lattice vibration and electron motions

According to classical theory, every degree of freedom
corresponds to ave. energy k7, with g T /2 kinetic energy

and k,T /2 potential energy; suppose there are /V atoms, the
total energy is g =3 Nk, T.

14
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N —

suppose N=N , (1 mole of atoms)

therefore mole capacity is:

oe
CV —_ (a—T)V —_ 3NAkB

which has nothing to do with specific material or any
temperature dependence.

Dulong-Petit’s law

15
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5.1 phonon heat capacity

Experiments show, Cj,

30 < vialates the Dulong-Petit’s

law.

2()
This demonstrates that

the classical theory of

( joule/mole-kelvin)

=10

C

equipartition of energy is

no longer valid, and the

1 | i 1 1 | 1

| quantum theory of crystal
0 100 200 300 400

Temperature T (K) vibration is needed.
16



|r4=’ﬁ| |’t T AR ?ﬁikk-‘?

\\‘* /BEIHANG UNIVERSITY

S.1 phonon heat capacity

lattice vibrations are quantized, at temperature 7, the

virbration with frequency @ has energy:
£ = (n + ljha)
2
1

average phonon #: |n; (61) = " hw;(q) kT
e i B

—1

Ignore the zero point energy: Eha)

Wm

D.O.S g(w), satisfy: g(w)dw = 3N
0

In which, o ,----max angular frequency,
N---—-# of primitive unit cell

17
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5.1 phonon heat capacity

Average Energy:
(o ho
& = jo o1k _lg(a))da)
Heat Capacity:
()
oT ),

2
o, ha) eha)/kBT
_[0 ky (kg—Tj (eha)/kBT . 1)2 g(a))da)

g(a)) = calculate the phonon heat capacity

18
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5.1 phonon heat capacity

2. Einstein Model

Suppose all the vibration modes are with the same frequency @.

Average energy of the crystal:

hwE
efle/kBT —_ 1

g(w) =3N

where NN is # of primitive cells (PN is # of atoms)

heat capacity:

19
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5.1 phonon heat capacity

Einstein Temperture: O, |h0)E = kB@E|

0.\ %7
r) e

Determination of @, : Select a proper value, such that the
calculated specific heat agrees with the experimental data,

in an extensive range of temperatures.

o7 >> 0., at high temperature

e@E/T B q ) 1 ) 2
(%71 (e e (2@’5)2 o,

20
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5.1 phonon heat capacity

o) 2
CV=3PNkB(@]fj (T j = 3PNk,

E

agrees with Dulong-Petit’s law.

o7 << 0O,, low temperature

e " >>1 er'T — 1= %7

2
C, =3PNk, (@Ej e %"

A 2 haog
=3PNkB( “’Ej e o7
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5.1 phonon heat capacity

T7T->0
C, -0

CV cl/asslcal theory
asymptotic behavior '
(from experiments):

Einstein model oversimplified the difference in frequence
of various lattice waves (vibration modes) 22
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3. Debye model

Regard Braivais lattices as isotfropic continuous media, and the
crystal vibration an elastic wave with longitudinal and

transverse waves presumably moving in the same velocity.
Volume of the crystal }; for elastic wave in an isotropic media
W =Uq do=uvdg

In each branch, # of vibration modes in the range of g~¢+ dg

V

(27)

dn =

23
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5.1 phonon heat capacity

# of vibration modes in the range of o ~o + dw :

V47zqda)_Va)2

dn = —
" 2ny 277 v

For each ¢, there corresponds 3 elastic waves (1 longitudinal,
2 transverse modes).

Therefore, # of modesin o ~ow+ dw :

dn—iza) dw
27 v’
( )da):dn—iz%a)zda)

24
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5.1 phonon heat capacity

Density of States:

3V
glo)=_ 5 5@
7T U

Average Energy:
(o  ho 3V
2 _[0 o'k _q ' 272

3V jwm ho’

ho/kgT . 1

2
o dw

dw

27220 e

Heat Capacity:

C _iK k ha) eha)/kBTa)2 da)
7 3 Jo k,T (eha)/kBT_l)z
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For N atoms, 3V canonical frequencies:

set

"/ BEIHANG UNIVERSITY

0 27 v’

5.1 phonon heat capacity

Jw glo)do = I iKa)zda)=3N

26
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5.1 phonon heat capacity

Debye Temperature: @, O :ha)m
D
kB
B
O, hw, h (67°N)
T k,T k,T\ V
3
£ =9NK,T| * [
O, e -1
3
V 62°N( T\ x e'x
C, =3k, — j I
277V \ O, 0 (e”—1)
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Debye temperature is a characteristic temperature of the system

o7T>0, e ~1+x

3 3
£ = 9NkBT(T] ;(('DTD) =3Nk,T

D

o€
C,.=|—| =3Nk
g (aT)V ?

tends to classical limit

28
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5.1 phonon heat capacity

0,
.T<<@D xm=7—)oo
© X ' © e x 4
I v e dx=__ I PRI Rl
0 (e” —1) 15 0 (e” —1) 15

In extremely temperature, specific heat changes as 7°.

29
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5.1 phonon heat capacity

20 |

C. (joule/mole kelvin)

0 | 1 1 |
0 0.2 0.4 0.6 0.8 1.0

(T/6p)

The curve of the specific heat of a solid (per mole) as a function of
erature, according to the Debye model in three dimensions. The experimental points

e data for yttrium reported by L. D. Jennings, R. E. Miller, and F. H. Spedding,

-~ . - s - moamnn

1.from elastic const. and wave velocity

determination of @, :
2.from specific heat data

30
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4. Comparison of Einstein and Debye Models

w(q9)
.

|
i

I

L

|

fix

; i
I

|

|

I

I

|

T

0

Crystal optical branch---Einstein model

Vibration acoustic branch---Debye model

31
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5.1 phonon heat capacity

Einstein Model:
Approximate all branches as a straight line, ignore the
eftfects of low energy phonons, and treat all lattice waves as

optical modes.

Debye Model:
For long wavelength acoustic waves, effective model at low

temperatures.

32
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¢, (cal/mole-K)
2 o e

—

0 0102 0304 0506 0.7 0.8 09 1.0
T/6

We also adopt the combination of the two models
hybridized model

g(a))= gE(a))-I- gb(w)

33
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5.2 Experimental Determination of Phonon Spectrum

The dispersion relation between frequency and wave vector

vibration sepctrum of crystal, phonon spectrum
When photons or neutrons are shot into crystals, they can
exchange energies with the lattice, and excite/annihilate
phonons—inelastic scattering.

Inelastic X-Ray scattering, neutron scattering, light scattering...

light scattered by acoustic phonon

Brillouin Scattering

light scattered by optic phonon Raman Scattering.
Raman spectrum is very important tool for investigating

microstructure in condensed matter. 34
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A triple axis neutron spectrometer at Brookhaven. (Courtesy of B. H. Grier.)
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4 T &
[100] s ° + [110] * [111] =
E . e.so — - — }— e +
o, 8‘
— oo ¢ o
& &o
E of " ~ 4 [ .
>
= 000 ° *
e L., o 4 L o e A
o ® Longitudinal o
E O Transverse o
0 I
0 100 0 330 O 3

Wavevector in units 27/a

90K, Na crystal, determined dispersion relation
along rthree directions

36
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5.3 Anharmonic Effects

Harmonic Approximation:

5.3 Anharmonic effects

Force on the atom is proportional to its displacement, potential

energy is kept up to 6 2.

Crystal vibration can be discribed as a series of

independent harmonic oscillators, which do not interact

with each other, nor exchange energy with each other.

Cannot convey energy, nor establish thermal equilibrium.

37
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5.3 Anharmonic effects

Realistic Crystal:

v" Strictly, the interaction between atoms are not completely
harmonic, the crystal vibration modes are not completely
independent, but can instead talk to each other.

v Phonon-phonon interaction exists, which enable them to
exchange energies. A phonon with a specific frequency could
be transfered into another phonon with different frequency,
and the distribution of phonons achieves thermal equilibrium
after a period of time.

v Anharmonic terms accounts for the existence of thermal

equilibrium of crystals. 38
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5.3 Anharmonic effects

‘._

I. Lattice Free Energy and Equation of State
1. thermodynamic relations

lattice free energy : F=U-TS

pressure: P= (GF j
oV
entropy: S = (GF j
oT
) 0°F
heat ity: C, =T =-T
eat capacity (aTj (8T2 jV

energy: UT)=F+TS=F-T oF
oT ),
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5.3 Anharmonic effects

2. Free Energy
lattice free energy: F=U(V)-k,TInZ

phonon contribution

U(V) —crystal cohesive energy at 7= 0, a function of
volume V, independent of temperature T

Z —phonon partition function :

7 = Ze—a,-/kBT

17w,
- _(n.+1)ha)i 2kgT
o "2 kT
For lattice wave @;: £, = Ze o= —
n;=0 -
1 —e kpT
4 . —haw; | 2k,T
Partition function e H P H e @i/ 2ks
for all vibration modes: A 1 — e "ilksT
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—U(V)+ ZBha) +k,Tln(l—e ™" )}

Sum over all branches and ¢ values (modes).

3. Equation of States

Nonlinear vibration changes the volume and frequency o,
@;1s a function of ¥

—ha;, [ksT
P:—(MJ _ GU z lh—l— he S d(()l-
ov), \ov) 4|27 1=’ gy

41
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oUu 1 hao, dlnw,
= —| D | zho+ ’ ’
(6VJT zz[z ’ d@“ﬂ-4} dv

ov ), V< dinV
) i | ho,
in which: &, =_ho,+—-
e —1

dIn w, .
set W= ! Gruneisen parameter,

dinl independent of w,, related with

nonlinear vibration.
dU g
P=——+y—
dV "V

5.3 Anharmonic effects

42
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II. Thermal Expansion

U]

Volume changes with 7, under a

\ /
fixed pressure. \\\ . I .
1. Qualitative analysis ‘\ { e

Y 1 T

Given a symmetric potential —
around equilibrium position, then \E

= equilibrium position independent of amplituide of vibration or
temperature.

Realistic potential curve is not strictly a parabola, steeper on the
left and smoother on the right side. Atoms tend to move

rightwards when vibration amplitudes increase. 43
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Anharmonic potential is non-symmetric, inducing some

“repulsive” interactions when atoms vibrate, accounting for

the themal expansion phenomenon.

2. quantitative analysis 4 P )
volume expansion ( V j 1 ( j K= (ayj
coefficient: oT K {( is bulk modulu§

linear expansion 1( ol j
AV

coefficient:

isotropic cubic system: ¢, =q/3= : (6P j
3K\oT ),

44
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According to equation of state:

P — _d_U + 7/5
dvV 'V
For most solids, volume change is small, expand % around

equilibrium V;:

2
dU:(dU) —|—(V—V0)d[£ +eee
v \dv), v ),

First term vanishes, retain up to the second term:

dU V-V, d*U V-V, :N/
D V - K 0
1 4 O(dejV




CHESE &4 EEX 2 5.3 Anharmonic effects

"/ BEIHANG UNIVERSITY

V-V, &
+y—
2 V

thermal expansion is the relation between V' and T at P = 0,

V-V, ye&
P= j::j> b=
0 V., KV

P=-K

dv =v -V,
azl(@Vj 7G|, 7 G
v\oT ), KV 3K V

Griineisen's law, thermal expansion of solids is proportional to

the specific heat (per volume).
46
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5.3 Anharmonic effects

III. Thermal Conductivity

1. phonon scattering

Lattice waves are no longer independent due to anharmonic

effects, leading to phonon scafttering.

The precess of phonon collision obeys energy conservation and

quasi-momentum conservation:

he, + ho, = ho,|

|Q1 +q, =q; +Gh|

47
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(1) Normal process

Wave vectors ¢,, ¢, are relatively small, resulting ¢, is still in
the Ist BZ, thus called normal process.

Total energy/wave vector Keeps unchanged, only the energy
and quasi-momentum of the two phonons are tranfered to a
3rd one, net heat flow does not decreases, nor does its direction

change.

If all phonon collisions are normal processes, the lattice
thermal conductivity diverges and resistivity is zero, i.e.,

normal process contributes nothing to thermal resistivity. .
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(2) Umklapp process

g, +q, €xceeds 1st BZ, due to the
peroidicity of lattice, wave vector g
describes the same vibration state

as g+ G,. q,+q,can be moved

back to 1st BZ by adding some

reciprocal lattice vector.

v" Such process is called umklapp process, a large angle
scattering. The direction of phonon movement is changed
greatly, making a shorter mean free path, and give rise to

some finite thermal resistivity. *
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2. Thermal Conductivity

Suppose different temperatures at two ends of the rod: 7, 7,
T,>T,
Heat flow, following the temperature gradient, move from

the hot end to the cold one, with energy density proportional

to the temperature gradient.

Lo a1
q " _Ka Fourier's law

where k¥ denotes thermal conductivity coefficient.

Thermal conductance: electrons (metal), phonon (insulator)
50
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® Atoms are vibrating more

. T, T,
strongly in the hot (left) end — — —
than those near the cold (right) — — —

end, leading to a larger

v Apply the gas molecule
density of phonons. Y 2

dynamic theory to the ph
® Phonons move from left to ynami Y phonon

: : gas, thermal conductivity
right, carrying heat, and flow

reads:

along the opposite direction of

K = %CVUI

temperature gradient.

v —phonon velocity; | —mean free path, mean distance a phonon

moves between two successive collisions with other phonons.
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Three mechanisms:
(1) Collision between phonons
Phonon-phonon scattering due to anharmonic couplings,

especially important at high tempertures.

HighT: T>>0,

Mean phonon number: n,= L i oc T

ha)q/kBT 1 ha)

Collision probability proportional to # of phonons,

Corresponding mean free path thus is inverse proportional to

temperatures: ] ~ l

T

52
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(2) Scattering of phonon with crystal defects

Impurities and defects also scatter phonons, since they partially
break the lattice periodicity. The larger the mass difference and
density of impurities are, the stronger the scattering is, and /

becomes shorter.
(3) scattering with the boundaries of specimen
At very low temperatures, (1,2) collisions are scarce.

» only few phonons exist, dilute phonon gas
> phonons with long wavelength at low temperatures, which
cannot be effectively scattered by objects like impurities of much

smaller size. 53
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5.3 Anharmonic effects

At low temperatures, the main mechanism is the boundary
scattering. It cause some geometric effects, since the phonon has
very long wavelength, which is comparable to the size of

specimen. Mean free path /= L, independent of temperatures.

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
* L 4
* *

At low T, thermal conductivity determined by heat capacity

: Kk~T° :
: At high T, thermal conductivity determined by mean free path /

- .
LN .*
-----------------------------------------------------------------------------------------------------------------



