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5.1 phonon heat capacity
I. Density of states 

Consider an atomic chain consisting of N lattice sites:

l
L

l
Na

q pp 22
==

where l is an integer 

NaL = —the length of the chain

the q-points are regularly arranged in a 1d chain, with 

distance            to each other.Lp2
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For large L, the distance becomes 

small, and the q-points are nearly 

continuous; each q-value (a single 

point) represents a vabration 

mode.

For an arbitrary distance dq，number 

of modes dn in between is: 

qLn d
2

d
p

=

q is related to frequence w via the dispersion relation, we can 

thus get the # of vibration modes in the range of                      .( )www d, +
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1. Definition
Density of modes (states): # of vibration modes per unit 
frequency interval
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3. Diatomic chain

for each branch ( )q+w ( )q-w

corresponds： ( ) ( ),g gw w+ -

( ) ( ) ( )www -+ += ggg

4. General crystals
q-points with the same frequencies 

consititutes closed contours, or a 

isosurface.

5.1  phonon heat capacity
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( ) ww =qj
!

( )d dj q q! !w w w+ = +

Count # of all modes between these two isosurfaces: jnd

Equal. ( ) ww djg Þ determine ( )wjg

Sum over all branches, one gets the total density of states:

( ) ( )å=
j

jgg ww

For a given branch j

two isoenergetic 
contours/isosurfaces 
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Example：A cube with length L

According to periodic boundary condition,
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A unit volume in q-point space contains:
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V——volume of the crystall
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Isosurfaces are spheres, with radius q. 
The # of modes in this sphere:
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For arbitrary isosurface, and any branch, vibration modes are 

uniformly distributed in    space. Corresponding DOS is:q!
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( )
( )3d d

2
Vn w w w
p

= ´ +频率 和 等频面间的体积

( )3d d d
2 S

Vn S q
p
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dS--surface element, 

dq^--distance between two surfaces

( )qq jqj ww Ñ= ^dd

( )qjqwÑ ——gradient along direction normal to the surface

(volume between     and            ) w ww d+
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Total Density of States：
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which satifies：
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II. Heat Capacity
1. lattice heat capacity

Specifici heat of solid is defined: 
V

V T
C ÷

ø
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: average intermal energy of solid, including energies of 

lattice vibration and electron motions

e

According to classical theory, every degree of freedom 

corresponds to ave. energy , with          kinetic energy 

and    potential energy; suppose there are N atoms, the 

total energy is                    .  

TkB

2TkB

2TkB

TNkB3=e
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suppose N=NA (1 mole of atoms)

therefore mole capacity is: 

3V A B
V

C N k
T
e¶æ ö= =ç ÷¶è ø

which has nothing to do with specific material or any 
temperature dependence.
——Dulong-Petit’s law

5.1  phonon heat capacity
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Experiments show，CV  

vialates the Dulong-Petit’s 

law.

This demonstrates that 

the classical theory of 

equipartition of energy is 

no longer valid, and the 

quantum theory of crystal 

vibration is needed.

5.1  phonon heat capacity
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lattice vibrations are quantized, at temperature T, the 

virbration with frequency w has energy: 
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Ignore the zero point energy:
1
2
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D.O.S      ,  satisfy：( )g w

In which, w m----max angular frequency, 
N----# of  primitive unit cell
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Average Energy：
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Heat Capacity：

Þ calculate the phonon heat capacity( )g w
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2. Einstein Model
Suppose all the vibration modes are with the same frequency wE . 

Average energy of the crystal:

where N is # of primitive cells (PN is # of atoms)

heat capacity: 
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Einstein Temperture: EΘ EBE Θk=w!
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Determination of      ：Select a proper value, such that the 

calculated specific heat agrees with the experimental data, 

in an extensive range of temperatures.
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0®T

0®VC

asymptotic behavior 
(from experiments)：

3T

Einstein model oversimplified the difference in frequence
of various lattice waves (vibration modes)

5.1  phonon heat capacity
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3. Debye model

Regard Braivais lattices as isotropic continuous media, and the 

crystal vibration an elastic wave with longitudinal and 

transverse waves presumably moving in the same velocity.

Volume of the crystal V, for elastic wave in an isotropic media

quw = qdd uw =

In each branch, # of vibration modes in the range of q~q+ dq

( )
qqVn d4

2
d 2

3 p
p

=
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# of vibration modes in the range of w ~ w + dw :
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For each q, there corresponds 3 elastic waves (1 longitudinal，

2 transverse modes).

Therefore, # of modes in w ~ w + dw :
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Heat Capacity: 

Density of States:
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For N atoms, 3N canonical frequencies:
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Debye temperature is a characteristic temperature of the system
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1.from elastic const. and wave velocity
2.from specific heat dataDΘ ofion determinat
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4. Comparison of Einstein and Debye Models

optical branch---Einstein model

acoustic branch---Debye model
Crystal 
Vibration

5.1  phonon heat capacity
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Einstein Model:

Approximate all branches as a straight line, ignore the 

effects of low energy phonons, and treat all lattice waves as 

optical modes.

Debye Model:

For long wavelength acoustic waves, effective model at low 

temperatures.

5.1  phonon heat capacity
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We also adopt the combination of the two models
—— hybridized model

( ) ( ) ( )www DE ggg +=

5.1  phonon heat capacity
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5.2 Experimental Determination of Phonon Spectrum

The dispersion relation between frequency and wave vector

——vibration sepctrum of crystal, phonon spectrum

When photons or neutrons are shot into crystals, they can 

exchange energies with the lattice, and excite/annihilate 

phonons—inelastic scattering.

Inelastic X-Ray scattering, neutron scattering, light scattering...

5.2 experimental determination of phonon spectrum

light scattered by acoustic phonon——Brillouin Scattering

light scattered by optic phonon——Raman Scattering. 

Raman spectrum is very important tool for investigating 

microstructure in condensed matter. 
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5.2 experimental determination of phonon spectrum
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90K, Na crystal, determined dispersion relation 
along three directions

5.2 experimental determination of phonon spectrum



37

5.3 Anharmonic Effects

Cannot convey energy, nor establish thermal equilibrium.

Harmonic Approximation:

Force on the atom is proportional to its displacement, potential 

energy is kept up to d 2.

Crystal vibration can be discribed as a series of 

independent harmonic oscillators, which do not interact 

with each other, nor exchange energy with each other. 

5.3  Anharmonic effects
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Realistic Crystal:

ü Strictly, the interaction between atoms are not completely 

harmonic, the crystal vibration modes are not completely 

independent, but can instead talk to each other.

ü Phonon-phonon interaction exists, which enable them to 

exchange energies.  A phonon with a specific frequency could 

be transfered into another phonon with different frequency, 

and the distribution of phonons achieves thermal equilibrium 

after a period of time.

ü Anharmonic terms accounts for the existence of thermal 

equilibrium of crystals.

5.3  Anharmonic effects
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I. Lattice Free Energy and Equation of State

lattice free energy ：

1. thermodynamic relations
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pressure：

entropy：

energy：

heat capacity：
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2. Free Energy
( ) ZTkVUF B ln-=

Z —phonon partition function :

å -= TkBieZ e

lattice free energy:

U(V) —crystal cohesive energy at T = 0 , a function of 
volume V, independent of temperature T
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3. Equation of States
Nonlinear vibration changes the volume and frequency wi, 
wi is a function of V.
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II. Thermal Expansion
Volume changes with T, under a 

fixed pressure.

1. Qualitative analysis
Given a symmetric potential 

around equilibrium position, then

Realistic potential curve is not strictly a parabola, steeper on the 

left and smoother on the right side. Atoms tend to move 

rightwards when vibration amplitudes increase.

Þ equilibrium position independent of amplituide of vibration or 

temperature.

5.3  Anharmonic effects
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Anharmonic potential is non-symmetric, inducing some 

“repulsive” interactions when atoms vibrate, accounting for 

the themal expansion phenomenon.

2. quantitative analysis
volume expansion

coefficient： VP T
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K is bulk modulus
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According to equation of state: 
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For most solids, volume change is small, expand around 

equilibrium V0: 
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thermal expansion is the relation between V and T at P = 0,

0d VVV -=

V
C

KT
V

V
V

P

ga =÷
ø
ö

ç
è
æ
¶
¶

=
0

1
V
C

K
V

l 3
ga =

Grüneisen's law, thermal expansion of solids is proportional to 
the specific heat (per volume).
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III. Thermal Conductivity

1. phonon scattering

Lattice waves are no longer independent due to anharmonic 

effects, leading to phonon scattering.

The precess of phonon collision obeys energy conservation and 

quasi-momentum conservation：

321 www !!! =+

hGqqq
!!!! +=+ 321

5.3  Anharmonic effects
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(1) Normal process 

Wave vectors , are relatively small, resulting is still in

the 1st BZ, thus called normal process.

Total energy/wave vector keeps unchanged, only the energy

and quasi-momentum of the two phonons are tranfered to a

3rd one, net heat flow does not decreases, nor does its direction

change.

1q 2q 3q

If all phonon collisions are normal processes, the lattice

thermal conductivity diverges and resistivity is zero, i.e.,

normal process contributes nothing to thermal resistivity.

5.3  Anharmonic effects
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(2) Umklapp process

1q

2q

3q

exceeds 1st BZ, due to the 

peroidicity of lattice, wave vector

describes the same vibration state 

as        .              can be moved 

back to 1st BZ by adding some 

reciprocal lattice vector.

q q1 2+! !

q!

hq G+
!!

ü Such process is called umklapp process, a large angle 

scattering. The direction of phonon movement is changed 

greatly, making a shorter mean free path, and give rise to 

some finite thermal resistivity.

5.3  Anharmonic effects
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2. Thermal Conductivity
Suppose different temperatures at two ends of the rod: T1, T2

12 TT >
Heat flow, following the temperature gradient, move from 

the hot end to the cold one, with energy density proportional 

to the temperature gradient.

x
TJq d

dk-=

where k denotes thermal conductivity coefficient.

Thermal conductance: electrons (metal), phonon (insulator) 

5.3  Anharmonic effects

Fourier's law



T2 T1

l Atoms are vibrating more

strongly in the hot (left) end

than those near the cold (right)

end, leading to a larger

density of phonons.

l Phonons move from left to

right, carrying heat, and flow

along the opposite direction of

temperature gradient.

ü Apply the gas molecule 

dynamic theory to the phonon 

gas, thermal conductivity 

reads：

lCVuk
3
1

=

u —phonon velocity; l —mean free path, mean distance a phonon 

moves between two successive collisions with other phonons.

5.3  Anharmonic effects
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Three mechanisms:

Phonon-phonon scattering due to anharmonic couplings, 

especially important at high tempertures.

(1) Collision between phonons

Mean phonon number:

High T: DΘT >>

TTk
e

n
q

B
Tkq Bq

µ»
-

=
ww
!

! 1
1

Collision probability proportional to # of phonons, 

Corresponding mean free path thus is inverse proportional to 

temperatures:
T

l 1~

5.3  Anharmonic effects
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(2) Scattering of phonon with crystal defects

(3) scattering with the boundaries of specimen

Impurities and defects also scatter phonons, since they partially 

break the lattice periodicity. The larger the mass difference and 

density of impurities are, the stronger the scattering is, and l 

becomes shorter.

At very low temperatures, (1,2) collisions are scarce.

Ø only few phonons exist, dilute phonon gas

Ø phonons with long wavelength at low temperatures, which 

cannot be effectively scattered by objects like impurities of much 

smaller size.

5.3  Anharmonic effects
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At low temperatures, the main mechanism is the boundary 

scattering. It cause some geometric effects, since the phonon has 

very long wavelength, which is comparable to the size of 

specimen. Mean free path l = L, independent of temperatures. 

lCVuk
3
1

=Remenber the thermal conductivity:

At low T, thermal conductivity determined by heat capacity
3~ Tk

At high T, thermal conductivity determined by mean free path l

T
1~k

5.3  Anharmonic effects


